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proportion of heat transfer by the quenching mechanism may of relation between the surface temperature fluctuation 
also be explained by the increased presence of nucleate and heat transferI Tram Japan Sot. Mech. Engrs 34, 

boiling. 152 (1967). 
4. R. C. KESSERLING. P. H. Roscrm and S. G. BANKOPP. 
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NOMENCLATURE 

h, 3612(2 - 6,); 
k, thermal conductivity; 

1, XL, optical thickness of medium ; 
n, inward normal at boundary; 

N, kx/(llaT g3) ; 

P, arccos (TJT,); 
-* 
4. heat flux ; 
4. T~*/uT:~; 
T*, temperature ; 
T, T*/Ts ; 

x*7 y*, physical coordinates; 

x, XX*, y = xy*, optical coordinates ; 

V2, 
a2 a2 
32 +jjjC 

6, emissivity ; 
x, absorption coefficient ; 
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Subscripts 
s, 
0, 
1, 

Boltzmann constant; 
kxV2T+ - 3kxT* - 41sT*~; 

x*/WTX‘?; 
-(,y + 3NT), radiation potential 

value on boundary ; 
valueatx,y=O; 
value at x, y = 1. 

INTRODUCTION 

THE PROBLEM of energy transfer in a conducting, absorbing 
and emitting medium has been considered highly non-linear 
[l], due to the presence of the re-emission term (T4 for a 
gray medium). However, for a one dimensional problem 
it has been shown by Chang [2] that this non-linearity is 
not as severe as was thought and the re-emission term T4 
can be linearized by functions which can be chosen in a 
number of ways In this note a two-dimensional problem, 
illustrated in Fig 1, is analyzed according to the differential 
formulation. The basic non-linear equation is lint solved 
numerically and this solution is then compared to the solu- 
tion of the linearized equation The following simplitying 
assumptions are used: (i) local thermodynamic equilibrium 
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exists; (ii) the medium is gray, with a refractive index of one 
and constant properties; (iii) scattering is negligible; and 
(iv) the boundary surfaces are gray and emit and absorb 
radiation ditfusely. 
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FIG. 1. Geometry of the problem. 

BASIC EQUATIONS AND THEIR SOLUTIONS 

With the simplifying assumptions and the dimensionless 
quantities defined above, the governing equations, which 
have been discussed elsewhere [2. 31. are as follows 

NV’T - 3NT - T4 = x 

V2% = 0 

with the boundary conditions on x and T 

T(4 y) = T, cos PY, T(x, 0) = To cos px 

T(l, y) = T(x, l) = T,. 

Once x is found the heat flux is given by 

Fj = fVx. 

(1) 

(4 

(3) 

(4) 

(5) 

The formal solution of (2) for x satisfying (3) is readily 
found as 

x(x> Y) = $ Lb’) 5 s, ds’ s 0 
I’ 

(6) 

where G(x, y; x’, y’) is the Green’s function associated with x 
and can be easily found as 143 

m m 

G= cc 
m=, “= I 

where 
Y,,(x) = y,(l, cos &x + h, sin A,x) 

” = 
and L,, are the roots of 

2h,l 
tanII=-----. 

A2 - h,Z 

It can be shown that as N--f co, x--t -3NT, the pure 
conduction case; as N -+ 0, x -+ -T*, the pure radiation 
case; and as @T/an), and (ax/c%& -+ 0, x -+ -3NT - T4, 
the Rosseland diffusion approximation. Solutions for these 
special cases will be used later, 
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FIG. 2. Temperature distribution at (x, I/2) or (l/2, y). 

Exact solution of(l) With x(x, y) given by (6), equation (1) 
was solved numerically by a finite difference method. A 
graded mesh was used with a small length increment near 
the boundaries The resultant set of non-linear, algebraic, 
equations was then solved by iteration with a convergence 
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criterion of 0.1 per cent. Some of the calculated results for 
the temperature distribution at (x, 1/2) or (I/2, y) and (x = y) 
are shown as solid curves labeled exact in Figs. 2 and 3. 
The heat flux at the surface (0, y) or (x, 0) is given in Fig. 4. 
These calculations are for T, = 1, ‘I; = 0.1, 1 = 1 and black 
surfaces. i.e. h, = 1.5. 
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FIG. 3. Temperature distribution at x = y. 

Approximate solution of(l). We linearixe the re-emission 
term T4 by writing T4 = 4TiT - 3Tf where T&x, y) is a 
known function. Equation (1) is then 

NV9 - (3N + 4Ti) T = I- 37-f (7) 

with the same boundary conditions as (4). The function 
TAX, y) may be taken as that obtained from the Rosseland 
diffusion approximation, or that of pure conduction, i.e. 
x(x, y, N + co) The latter is simpler, but for small values of 
N, the following modification of the boundary condition is 
employed [Z] : 

x(0, y. N = 0) < T(4 Y) cos (PY) < To cos @Y) 

T < T(f, Y) < ~$9 Y, N = 0). 

The same holds for T(x, 0) and T(x, f). Equation (7) was 
solved numerically by using T, as the conduction solution. 
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FIG. 4. Heat flux at (0, y) or (x, 0). 

Some results are shown in Figs. 2 and 3. Maximum errors 
of the temperature and heat flux are shown in Table 1, 
for cases where the temperatures at the hotter surfaces were 
not modified. 

Table 1. Diferences between linearized and exact 
solutions 

Max, “/, difference 
N 

Heat flux Temperature 

21 0 0 

0.1 0.065 1.50 

0.03 0.141 2.47 

0.01 0022 3.02 

Solution of (7) obtained by using T. as that of the Rosseland 
diffusion approximation yielded virtually the same results. 
The error in the heat flux is negligibly small while that of the 
temperature is only a few per cent. When T, was modified 
as indicated in Figs. 2 and 3, the maximum error in tempera- 
ture was reduced to less than 1 per cent. If only the heat 
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flux is of interest, the superposition of conduction and will be higher than that of pure conduction for 4 > T4 and 
radiation aives reasonably good results, lower for 4 < T4. It is seen from Fig 3 that re-emission _ _ 

4(x, 0) = 3N Vx(x, 0, N -+ co) + $Vx(x, 0, N + 0). (8) 
predominates over absorption only in a small region near 
the hotter comer, and the latter is more important than the 
former in a large part of the medium. At smaller values of N, 

DISCUSSION the difference between absorption and re-emission is magni- 

It may be noted in Fig 4 that in order to maintain the tied and hence the larger is the difference between the actual 

prescribed surface temperatures, heat is to be applied along temperature and that of pure conduction. Presumably, the 

a part of the surfaces at x, y = 0 and removed along the linearization procedure may apply as well when the con- 

remainder. For N > 10 (conduction predominating), heat vective process is involved and an approximate solution of 

flows into the medium along the entire hotter surfaces. The (7) by variational method could be developed. 

theoretical basis of the linearization procedure was dis- 
cussed for one-dimensional problems in [3] where it was 
shown that the radiation-potential profile is not sensitive 
to the variation of N. For the present two-dimensional 1. 
problem, calculated curves of x + 3NT, the radiation 
potential, exhibit the same character, i.e. their shapes do 
not change greatly with N, and consequently the success of 

2 
’ 

the linearization is assured. 
Further discussions pertaining to the effects of absorption 3. 

and re-emission on the temperature field can be made by 
rewriting (1) in the form, 

V2T= -&j-T’) (9) 

where I$ and T4 represent, respectively, the radiant energy 4. 
absorbed and reemitted [3]. Obviously. the temperature 

REFERENCES 

L. VISKANTA and R. L. GROSH, Heat transfer by simul- 
taneous conduction and radiation in an absorbing 
medium, J. Heut Tranfm WC, 63-72 (1962). 
Y. P. CHANG, A potential treatment of energy transfer in a 
conducting, absorbing and emitting medium, ASME 
paper No. 67-WA/HT-40. 
Y. P. CHANG and C. H. KANG, Transient and steady heat 
transfer in a conducting and radiating medium, to appear 
in AIAA Jl and Y. P. CHANG and R. S. SETH, Steady and 
transient heat transfer by radiation and conduction in a 
medium bounded by two co-axial cylindrical surfaces, 
Inc. J. Heat Masp Transfer 13,69-g0 (1970). 
P. M. Moass and H. FESHBACK, Method of Theoretical 
Physics. Chapter 7. McGraw-Hill, New York (1953). 

bu. 1. Heal .&UI Trmu/n. Vol. 13. pp. 1243-1248. Pergamon Rcgs 1970. Printed in Great Britain 
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X, 

Y. 
Z, 

I, 

S, 

z 
C, 
D, 
V HI, 
Gr, 

NOMENCLATURE 
vertical co-ordinate and orifice axis of symmetry; 
horizontal co-ordinate in the plane considered ; 
horizontal co-ordinate; 
horizontal polar co-ordinate, r2 = y* + rr ; 
displacement of interferometer fringes ; 
refractive index of gas; 
concentration coefficient of volumetric expansion ; 
volume concentration of hydrogen in air; 
diffusivity ; 
volumetric flow rate of hydrogen ; 
Grashof number for mass transfer ; 

SC, Schmidt number ; 
8, concentration difference ; 
h, dimensionless concentration function ; 
Pv density ; 
9, gravitational acceleration ; 
V, kinematic viscosity. 

INTRODUCTION 
DIFFUSI~X free convection in a jet produced by hydrogen 
outflow into ambient air is characterized by velocity and 
concentration fields Boundary conditions of the field depend 
on the outflow geometry. 


